Overview

Dataset statistics

Number of variables 23
Number of observations 1429
Missing cells 20
Missing cells (%) 0.1%
Duplicate rows 0
Duplicate rows (%) 0.0%
Total size in memory 889.5 KiB
Average record size in memory 637.4 B

Variable types

Numeric 15
Categorical 8

Alerts

Survey_id is highly correlated with Ville_id High correlation
Ville_id is highly correlated with Survey_id High correlation
number_children is highly correlated with total_members High correlation
total_members is highly correlated with number_children High correlation
Survey_id is highly correlated with Ville_id High correlation
Ville_id is highly correlated with Survey_id High correlation
number_children is highly correlated with total_members High correlation
total_members is highly correlated with number_children High correlation
Survey_id is highly correlated with Ville_id High correlation
Ville_id is highly correlated with Survey_id High correlation
number_children is highly correlated with total_members High correlation
total_members is highly correlated with number_children High correlation
labor_primary is highly correlated with incoming_salary High correlation
incoming_salary is highly correlated with labor_primary High correlation
incoming_no_business is highly correlated with incoming_business High correlation
incoming_business is highly correlated with incoming_no_business High correlation
Survey_id is highly correlated with Ville_id High correlation
Ville_id is highly correlated with Survey_id High correlation
age is highly correlated with relationship and 1 other fields High correlation
relationship is highly correlated with age High correlation
number_children is highly correlated with total_members High correlation
education_level is highly correlated with age High correlation
total_members is highly correlated with number_children and 6 other fields High correlation
gained_asset is highly correlated with living_expenses and 4 other fields High correlation
durable_asset is highly correlated with lasting_investment High correlation
living_expenses is highly correlated with total_members and 6 other fields High correlation
other_expenses is highly correlated with total_members and 6 other fields High correlation
incoming_salary is highly correlated with labor_primary High correlation
incoming_business is highly correlated with incoming_no_business High correlation
incoming_no_business is highly correlated with incoming_business High correlation
labor_primary is highly correlated with incoming_salary High correlation
incoming_agricultural is highly correlated with total_members and 5 other fields High correlation
farm_expenses is highly correlated with total_members and 6 other fields High correlation
lasting_investment is highly correlated with total_members and 7 other fields High correlation
no_lasting_investmen is highly correlated with total_members and 6 other fields High correlation
no_lasting_investmen has 20 (1.4%) missing values Missing
Survey_id is uniformly distributed Uniform
Survey_id has unique values Unique
number_children has 154 (10.8%) zeros Zeros

Reproduction

Analysis started 2022-07-31 05:00:20.397368
Analysis finished 2022-07-31 05:02:55.010247
Duration 2 minutes and 34.61 seconds
Software version pandas-profiling v3.2.0
Download configuration config.json

Variables

Survey_id
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
UNIFORM
UNIQUE

Distinct 1429
Distinct (%) 100.0%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 715
Minimum 1
Maximum 1429
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:32:55.782246 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 1
5-th percentile 72.4
Q1 358
median 715
Q3 1072
95-th percentile 1357.6
Maximum 1429
Range 1428
Interquartile range (IQR) 714

Descriptive statistics

Standard deviation 412.6610797
Coefficient of variation (CV) 0.5771483632
Kurtosis -1.2
Mean 715
Median Absolute Deviation (MAD) 357
Skewness 0
Sum 1021735
Variance 170289.1667
Monotonicity Not monotonic
2022-07-31T10:32:56.261233 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
Value Count Frequency (%)
926 1
 
0.1%
327 1
 
0.1%
726 1
 
0.1%
1197 1
 
0.1%
566 1
 
0.1%
423 1
 
0.1%
338 1
 
0.1%
1424 1
 
0.1%
1092 1
 
0.1%
1150 1
 
0.1%
Other values (1419) 1419
99.3%
Value Count Frequency (%)
1 1
0.1%
2 1
0.1%
3 1
0.1%
4 1
0.1%
5 1
0.1%
6 1
0.1%
7 1
0.1%
8 1
0.1%
9 1
0.1%
10 1
0.1%
Value Count Frequency (%)
1429 1
0.1%
1428 1
0.1%
1427 1
0.1%
1426 1
0.1%
1425 1
0.1%
1424 1
0.1%
1423 1
0.1%
1422 1
0.1%
1421 1
0.1%
1420 1
0.1%

Ville_id
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION

Distinct 255
Distinct (%) 17.8%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 76.28621414
Minimum 1
Maximum 292
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:32:56.733249 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 1
5-th percentile 6
Q1 24
median 57
Q3 105
95-th percentile 216.6
Maximum 292
Range 291
Interquartile range (IQR) 81

Descriptive statistics

Standard deviation 66.44401162
Coefficient of variation (CV) 0.8709832093
Kurtosis 0.5957708946
Mean 76.28621414
Median Absolute Deviation (MAD) 37
Skewness 1.145897394
Sum 109013
Variance 4414.80668
Monotonicity Not monotonic
2022-07-31T10:32:57.165249 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
Value Count Frequency (%)
15 24
 
1.7%
17 21
 
1.5%
23 21
 
1.5%
7 20
 
1.4%
8 19
 
1.3%
20 18
 
1.3%
21 18
 
1.3%
11 18
 
1.3%
27 17
 
1.2%
4 16
 
1.1%
Other values (245) 1237
86.6%
Value Count Frequency (%)
1 16
1.1%
2 9
0.6%
3 15
1.0%
4 16
1.1%
5 15
1.0%
6 15
1.0%
7 20
1.4%
8 19
1.3%
9 12
0.8%
10 11
0.8%
Value Count Frequency (%)
292 1
0.1%
291 1
0.1%
290 1
0.1%
287 1
0.1%
285 1
0.1%
283 1
0.1%
281 1
0.1%
279 1
0.1%
278 1
0.1%
275 1
0.1%

sex
Categorical

Distinct 2
Distinct (%) 0.1%
Missing 0
Missing (%) 0.0%
Memory size 81.1 KiB
F
1312 
M
 
117

Length

Max length 1
Median length 1
Mean length 1
Min length 1

Characters and Unicode

Total characters 1429
Distinct characters 2
Distinct categories 1 ?
Distinct scripts 1 ?
Distinct blocks 1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique 0 ?
Unique (%) 0.0%

Sample

1st row F
2nd row F
3rd row F
4th row F
5th row M

Common Values

Value Count Frequency (%)
F 1312
91.8%
M 117
 
8.2%

Length

2022-07-31T10:32:57.922233 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-07-31T10:32:58.515360 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Value Count Frequency (%)
f 1312
91.8%
m 117
 
8.2%

Most occurring characters

Value Count Frequency (%)
F 1312
91.8%
M 117
 
8.2%

Most occurring categories

Value Count Frequency (%)
Uppercase Letter 1429
100.0%

Most frequent character per category

Uppercase Letter
Value Count Frequency (%)
F 1312
91.8%
M 117
 
8.2%

Most occurring scripts

Value Count Frequency (%)
Latin 1429
100.0%

Most frequent character per script

Latin
Value Count Frequency (%)
F 1312
91.8%
M 117
 
8.2%

Most occurring blocks

Value Count Frequency (%)
ASCII 1429
100.0%

Most frequent character per block

ASCII
Value Count Frequency (%)
F 1312
91.8%
M 117
 
8.2%

age
Real number (ℝ≥0)

HIGH CORRELATION

Distinct 71
Distinct (%) 5.0%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 34.77746676
Minimum 17
Maximum 91
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:32:58.871345 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 17
5-th percentile 20
Q1 25
median 30
Q3 42
95-th percentile 64
Maximum 91
Range 74
Interquartile range (IQR) 17

Descriptive statistics

Standard deviation 13.98621857
Coefficient of variation (CV) 0.4021632359
Kurtosis 1.186622436
Mean 34.77746676
Median Absolute Deviation (MAD) 7
Skewness 1.261274574
Sum 49697
Variance 195.6143098
Monotonicity Not monotonic
2022-07-31T10:32:59.333360 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
Value Count Frequency (%)
25 78
 
5.5%
23 72
 
5.0%
22 69
 
4.8%
26 68
 
4.8%
27 64
 
4.5%
28 61
 
4.3%
24 55
 
3.8%
35 53
 
3.7%
20 49
 
3.4%
21 46
 
3.2%
Other values (61) 814
57.0%
Value Count Frequency (%)
17 8
 
0.6%
18 19
 
1.3%
19 37
2.6%
20 49
3.4%
21 46
3.2%
22 69
4.8%
23 72
5.0%
24 55
3.8%
25 78
5.5%
26 68
4.8%
Value Count Frequency (%)
91 1
 
0.1%
87 1
 
0.1%
86 1
 
0.1%
85 1
 
0.1%
84 1
 
0.1%
82 1
 
0.1%
81 4
0.3%
80 3
0.2%
79 1
 
0.1%
78 2
0.1%

relationship
Categorical

HIGH CORRELATION

Distinct 2
Distinct (%) 0.1%
Missing 0
Missing (%) 0.0%
Memory size 88.0 KiB
Couple
1104 
Single
325 

Length

Max length 6
Median length 6
Mean length 6
Min length 6

Characters and Unicode

Total characters 8574
Distinct characters 10
Distinct categories 2 ?
Distinct scripts 1 ?
Distinct blocks 1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique 0 ?
Unique (%) 0.0%

Sample

1st row Couple
2nd row Couple
3rd row Couple
4th row Couple
5th row Single

Common Values

Value Count Frequency (%)
Couple 1104
77.3%
Single 325
 
22.7%

Length

2022-07-31T10:32:59.741361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-07-31T10:33:00.101359 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Value Count Frequency (%)
couple 1104
77.3%
single 325
 
22.7%

Most occurring characters

Value Count Frequency (%)
l 1429
16.7%
e 1429
16.7%
C 1104
12.9%
o 1104
12.9%
u 1104
12.9%
p 1104
12.9%
S 325
 
3.8%
i 325
 
3.8%
n 325
 
3.8%
g 325
 
3.8%

Most occurring categories

Value Count Frequency (%)
Lowercase Letter 7145
83.3%
Uppercase Letter 1429
 
16.7%

Most frequent character per category

Lowercase Letter
Value Count Frequency (%)
l 1429
20.0%
e 1429
20.0%
o 1104
15.5%
u 1104
15.5%
p 1104
15.5%
i 325
 
4.5%
n 325
 
4.5%
g 325
 
4.5%
Uppercase Letter
Value Count Frequency (%)
C 1104
77.3%
S 325
 
22.7%

Most occurring scripts

Value Count Frequency (%)
Latin 8574
100.0%

Most frequent character per script

Latin
Value Count Frequency (%)
l 1429
16.7%
e 1429
16.7%
C 1104
12.9%
o 1104
12.9%
u 1104
12.9%
p 1104
12.9%
S 325
 
3.8%
i 325
 
3.8%
n 325
 
3.8%
g 325
 
3.8%

Most occurring blocks

Value Count Frequency (%)
ASCII 8574
100.0%

Most frequent character per block

ASCII
Value Count Frequency (%)
l 1429
16.7%
e 1429
16.7%
C 1104
12.9%
o 1104
12.9%
u 1104
12.9%
p 1104
12.9%
S 325
 
3.8%
i 325
 
3.8%
n 325
 
3.8%
g 325
 
3.8%

number_children
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
ZEROS

Distinct 12
Distinct (%) 0.8%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 2.883135059
Minimum 0
Maximum 11
Zeros 154
Zeros (%) 10.8%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:33:00.394346 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 0
5-th percentile 0
Q1 2
median 3
Q3 4
95-th percentile 6
Maximum 11
Range 11
Interquartile range (IQR) 2

Descriptive statistics

Standard deviation 1.874471644
Coefficient of variation (CV) 0.6501504806
Kurtosis 0.1764385441
Mean 2.883135059
Median Absolute Deviation (MAD) 1
Skewness 0.5243187419
Sum 4120
Variance 3.513643946
Monotonicity Not monotonic
2022-07-31T10:33:00.694345 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=12)
Value Count Frequency (%)
3 307
21.5%
2 294
20.6%
4 229
16.0%
1 187
13.1%
0 154
10.8%
5 127
8.9%
6 74
 
5.2%
7 35
 
2.4%
8 17
 
1.2%
9 3
 
0.2%
Other values (2) 2
 
0.1%
Value Count Frequency (%)
0 154
10.8%
1 187
13.1%
2 294
20.6%
3 307
21.5%
4 229
16.0%
5 127
8.9%
6 74
 
5.2%
7 35
 
2.4%
8 17
 
1.2%
9 3
 
0.2%
Value Count Frequency (%)
11 1
 
0.1%
10 1
 
0.1%
9 3
 
0.2%
8 17
 
1.2%
7 35
 
2.4%
6 74
 
5.2%
5 127
8.9%
4 229
16.0%
3 307
21.5%
2 294
20.6%

education_level
Real number (ℝ≥0)

HIGH CORRELATION

Distinct 18
Distinct (%) 1.3%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 8.687193842
Minimum 1
Maximum 19
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:33:01.016351 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 1
5-th percentile 1
Q1 8
median 9
Q3 10
95-th percentile 14
Maximum 19
Range 18
Interquartile range (IQR) 2

Descriptive statistics

Standard deviation 2.923532413
Coefficient of variation (CV) 0.3365335765
Kurtosis 1.42144372
Mean 8.687193842
Median Absolute Deviation (MAD) 1
Skewness -0.7680590407
Sum 12414
Variance 8.54704177
Monotonicity Not monotonic
2022-07-31T10:33:01.323361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=18)
Value Count Frequency (%)
10 431
30.2%
9 294
20.6%
8 171
 
12.0%
7 96
 
6.7%
1 83
 
5.8%
14 69
 
4.8%
6 63
 
4.4%
12 61
 
4.3%
11 46
 
3.2%
5 35
 
2.4%
Other values (8) 80
 
5.6%
Value Count Frequency (%)
1 83
 
5.8%
2 3
 
0.2%
3 16
 
1.1%
4 34
 
2.4%
5 35
 
2.4%
6 63
 
4.4%
7 96
 
6.7%
8 171
 
12.0%
9 294
20.6%
10 431
30.2%
Value Count Frequency (%)
19 1
 
0.1%
18 2
 
0.1%
17 3
 
0.2%
16 3
 
0.2%
14 69
 
4.8%
13 18
 
1.3%
12 61
 
4.3%
11 46
 
3.2%
10 431
30.2%
9 294
20.6%

total_members
Real number (ℝ≥0)

HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION
HIGH CORRELATION

Distinct 12
Distinct (%) 0.8%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 4.969209237
Minimum 1
Maximum 12
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:33:01.676343 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 1
5-th percentile 2
Q1 4
median 5
Q3 6
95-th percentile 8
Maximum 12
Range 11
Interquartile range (IQR) 2

Descriptive statistics

Standard deviation 1.786316886
Coefficient of variation (CV) 0.3594770919
Kurtosis 1.441631465
Mean 4.969209237
Median Absolute Deviation (MAD) 1
Skewness 0.5409486128
Sum 7101
Variance 3.190928016
Monotonicity Not monotonic
2022-07-31T10:33:01.984346 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=12)
Value Count Frequency (%)
5 611
42.8%
4 203
 
14.2%
6 145
 
10.1%
3 136
 
9.5%
7 98
 
6.9%
2 74
 
5.2%
8 61
 
4.3%
1 40
 
2.8%
9 30
 
2.1%
10 22
 
1.5%
Other values (2) 9
 
0.6%
Value Count Frequency (%)
1 40
 
2.8%
2 74
 
5.2%
3 136
 
9.5%
4 203
 
14.2%
5 611
42.8%
6 145
 
10.1%
7 98
 
6.9%
8 61
 
4.3%
9 30
 
2.1%
10 22
 
1.5%
Value Count Frequency (%)
12 5
 
0.3%
11 4
 
0.3%
10 22
 
1.5%
9 30
 
2.1%
8 61
 
4.3%
7 98
 
6.9%
6 145
 
10.1%
5 611
42.8%
4 203
 
14.2%
3 136
 
9.5%

gained_asset
Real number (ℝ≥0)

HIGH CORRELATION

Distinct 441
Distinct (%) 30.9%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 33634477.74
Minimum 325112
Maximum 99127548
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:33:02.397361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 325112
5-th percentile 10089683
Q1 23269824
median 28912201
Q3 37172832
95-th percentile 82606287
Maximum 99127548
Range 98802436
Interquartile range (IQR) 13903008

Descriptive statistics

Standard deviation 20038537.36
Coefficient of variation (CV) 0.5957737032
Kurtosis 1.468320679
Mean 33634477.74
Median Absolute Deviation (MAD) 6612234
Skewness 1.335229517
Sum 4.806366869 × 1010
Variance 4.015429794 × 1014
Monotonicity Not monotonic
2022-07-31T10:33:02.896361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
Value Count Frequency (%)
28912201 560
39.2%
82606287 50
 
3.5%
41303144 40
 
2.8%
20651573 31
 
2.2%
16521257 28
 
2.0%
12390944 20
 
1.4%
24781887 17
 
1.2%
37172832 15
 
1.0%
41303146 12
 
0.8%
22375139 12
 
0.8%
Other values (431) 644
45.1%
Value Count Frequency (%)
325112 1
 
0.1%
388964 5
0.3%
584561 1
 
0.1%
1018915 3
0.2%
1108353 1
 
0.1%
1169122 3
0.2%
1297245 1
 
0.1%
1407879 2
 
0.1%
1473414 1
 
0.1%
1559897 1
 
0.1%
Value Count Frequency (%)
99127548 2
0.1%
98444366 1
0.1%
97761192 1
0.1%
96556207 1
0.1%
96143182 1
0.1%
96092224 1
0.1%
95902509 1
0.1%
94663409 1
0.1%
94314049 2
0.1%
93596368 1
0.1%

durable_asset
Real number (ℝ≥0)

HIGH CORRELATION

Distinct 590
Distinct (%) 41.3%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 27172956.9
Minimum 162556
Maximum 99615601
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:33:03.363361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 162556
5-th percentile 6854578.4
Q1 19298521
median 22861940
Q3 26569498
95-th percentile 74471474
Maximum 99615601
Range 99453045
Interquartile range (IQR) 7270977

Descriptive statistics

Standard deviation 18156721.59
Coefficient of variation (CV) 0.6681908658
Kurtosis 4.283692224
Mean 27172956.9
Median Absolute Deviation (MAD) 3643497
Skewness 2.009777258
Sum 3.88301554 × 1010
Variance 3.29666539 × 1014
Monotonicity Not monotonic
2022-07-31T10:33:03.836353 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
Value Count Frequency (%)
22861940 548
38.3%
16015369 8
 
0.6%
12812296 7
 
0.5%
96092216 7
 
0.5%
11851374 6
 
0.4%
21941057 6
 
0.4%
24023054 5
 
0.3%
14894295 5
 
0.3%
23222287 5
 
0.3%
80076847 5
 
0.3%
Other values (580) 827
57.9%
Value Count Frequency (%)
162556 1
 
0.1%
164638 1
 
0.1%
172966 5
0.3%
249039 1
 
0.1%
257367 1
 
0.1%
325112 2
 
0.1%
736707 3
0.2%
1016976 2
 
0.1%
1040999 2
 
0.1%
1145099 1
 
0.1%
Value Count Frequency (%)
99615601 1
0.1%
99455444 1
0.1%
99295296 1
0.1%
99135139 1
0.1%
98494522 1
0.1%
98334373 1
0.1%
97853912 1
0.1%
97693758 1
0.1%
97693756 2
0.1%
96092224 2
0.1%

save_asset
Real number (ℝ≥0)

Distinct 268
Distinct (%) 18.8%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 27424707.84
Minimum 172966
Maximum 99926758
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:33:04.351344 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 172966
5-th percentile 10489518.6
Q1 23399979
median 23399979
Q3 23399979
95-th percentile 80076847
Maximum 99926758
Range 99753792
Interquartile range (IQR) 0

Descriptive statistics

Standard deviation 17751374.29
Coefficient of variation (CV) 0.6472766965
Kurtosis 6.181864851
Mean 27424707.84
Median Absolute Deviation (MAD) 0
Skewness 2.479890749
Sum 3.91899075 × 1010
Variance 3.151112892 × 1014
Monotonicity Not monotonic
2022-07-31T10:33:04.819371 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
Value Count Frequency (%)
23399979 963
67.4%
80076847 21
 
1.5%
16015369 21
 
1.5%
1601537 15
 
1.0%
32030739 15
 
1.0%
3203074 15
 
1.0%
48046112 14
 
1.0%
12812296 14
 
1.0%
48046108 13
 
0.9%
96092224 11
 
0.8%
Other values (258) 327
 
22.9%
Value Count Frequency (%)
172966 1
 
0.1%
1040999 1
 
0.1%
1242339 1
 
0.1%
1481805 1
 
0.1%
1601537 15
1.0%
1770641 1
 
0.1%
1871068 1
 
0.1%
1915728 1
 
0.1%
1943873 1
 
0.1%
2162075 1
 
0.1%
Value Count Frequency (%)
99926758 1
 
0.1%
99903496 1
 
0.1%
99787193 1
 
0.1%
99694153 1
 
0.1%
99601105 1
 
0.1%
98670692 1
 
0.1%
97693756 1
 
0.1%
97112244 1
 
0.1%
96995949 1
 
0.1%
96092224 11
0.8%

living_expenses
Real number (ℝ≥0)

HIGH CORRELATION

Distinct 411
Distinct (%) 28.8%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 32482565.52
Minimum 262919
Maximum 99295282
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:33:05.300359 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 262919
5-th percentile 4216980.4
Q1 20886711
median 26692283
Q3 38436887
95-th percentile 80076848.2
Maximum 99295282
Range 99032363
Interquartile range (IQR) 17550176

Descriptive statistics

Standard deviation 21015284.19
Coefficient of variation (CV) 0.6469711937
Kurtosis 1.100698748
Mean 32482565.52
Median Absolute Deviation (MAD) 7714069
Skewness 1.246831118
Sum 4.641758613 × 1010
Variance 4.416421696 × 1014
Monotonicity Not monotonic
2022-07-31T10:33:06.127346 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
Value Count Frequency (%)
26692283 515
36.0%
53384566 26
 
1.8%
13346142 23
 
1.6%
10676913 23
 
1.6%
66730708 23
 
1.6%
1601537 20
 
1.4%
33365355 17
 
1.2%
20019212 17
 
1.2%
18684598 14
 
1.0%
40038424 13
 
0.9%
Other values (401) 738
51.6%
Value Count Frequency (%)
262919 2
0.1%
338992 1
 
0.1%
397715 1
 
0.1%
422005 1
 
0.1%
501548 1
 
0.1%
1040999 1
 
0.1%
1134422 3
0.2%
1245195 1
 
0.1%
1279895 1
 
0.1%
1321268 1
 
0.1%
Value Count Frequency (%)
99295282 1
 
0.1%
98361063 1
 
0.1%
97426834 1
 
0.1%
97426832 1
 
0.1%
96092218 4
0.3%
95291452 1
 
0.1%
94223757 1
 
0.1%
93916788 1
 
0.1%
93422995 1
 
0.1%
93422994 2
0.1%

other_expenses
Real number (ℝ≥0)

HIGH CORRELATION

Distinct 615
Distinct (%) 43.0%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 33666324.45
Minimum 172966
Maximum 99823799
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:33:06.613348 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 172966
5-th percentile 5023381
Q1 20980135
median 28203066
Q3 40518887
95-th percentile 84304906.4
Maximum 99823799
Range 99650833
Interquartile range (IQR) 19538752

Descriptive statistics

Standard deviation 21702655.58
Coefficient of variation (CV) 0.6446398866
Kurtosis 1.117129099
Mean 33666324.45
Median Absolute Deviation (MAD) 8952593
Skewness 1.229584659
Sum 4.810917764 × 1010
Variance 4.710052591 × 1014
Monotonicity Not monotonic
2022-07-31T10:33:07.110361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
Value Count Frequency (%)
28203066 429
30.0%
14413833 9
 
0.6%
88084536 8
 
0.6%
72069163 8
 
0.6%
59256868 7
 
0.5%
89686069 7
 
0.5%
17616907 7
 
0.5%
83279924 6
 
0.4%
80076847 5
 
0.3%
48046112 5
 
0.3%
Other values (605) 938
65.6%
Value Count Frequency (%)
172966 2
0.1%
325112 1
 
0.1%
411595 1
 
0.1%
481422 1
 
0.1%
498078 1
 
0.1%
736707 2
0.1%
975336 1
 
0.1%
1040999 3
0.2%
1145099 3
0.2%
1169122 2
0.1%
Value Count Frequency (%)
99823799 1
 
0.1%
99695679 1
 
0.1%
99455452 1
 
0.1%
99295292 4
0.3%
98974991 1
 
0.1%
98814831 1
 
0.1%
98686707 1
 
0.1%
98414452 1
 
0.1%
97693758 2
0.1%
96892986 1
 
0.1%

incoming_salary
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct 2
Distinct (%) 0.1%
Missing 0
Missing (%) 0.0%
Memory size 91.5 KiB
No Income
1172 
Income
257 

Length

Max length 9
Median length 9
Mean length 8.460461861
Min length 6

Characters and Unicode

Total characters 12090
Distinct characters 8
Distinct categories 3 ?
Distinct scripts 2 ?
Distinct blocks 1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique 0 ?
Unique (%) 0.0%

Sample

1st row No Income
2nd row No Income
3rd row No Income
4th row No Income
5th row Income

Common Values

Value Count Frequency (%)
No Income 1172
82.0%
Income 257
 
18.0%

Length

2022-07-31T10:33:07.510345 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-07-31T10:33:07.862360 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Value Count Frequency (%)
income 1429
54.9%
no 1172
45.1%

Most occurring characters

Value Count Frequency (%)
o 2601
21.5%
I 1429
11.8%
n 1429
11.8%
c 1429
11.8%
m 1429
11.8%
e 1429
11.8%
N 1172
9.7%
1172
9.7%

Most occurring categories

Value Count Frequency (%)
Lowercase Letter 8317
68.8%
Uppercase Letter 2601
 
21.5%
Space Separator 1172
 
9.7%

Most frequent character per category

Lowercase Letter
Value Count Frequency (%)
o 2601
31.3%
n 1429
17.2%
c 1429
17.2%
m 1429
17.2%
e 1429
17.2%
Uppercase Letter
Value Count Frequency (%)
I 1429
54.9%
N 1172
45.1%
Space Separator
Value Count Frequency (%)
1172
100.0%

Most occurring scripts

Value Count Frequency (%)
Latin 10918
90.3%
Common 1172
 
9.7%

Most frequent character per script

Latin
Value Count Frequency (%)
o 2601
23.8%
I 1429
13.1%
n 1429
13.1%
c 1429
13.1%
m 1429
13.1%
e 1429
13.1%
N 1172
10.7%
Common
Value Count Frequency (%)
1172
100.0%

Most occurring blocks

Value Count Frequency (%)
ASCII 12090
100.0%

Most frequent character per block

ASCII
Value Count Frequency (%)
o 2601
21.5%
I 1429
11.8%
n 1429
11.8%
c 1429
11.8%
m 1429
11.8%
e 1429
11.8%
N 1172
9.7%
1172
9.7%

incoming_own_farm
Categorical

Distinct 2
Distinct (%) 0.1%
Missing 0
Missing (%) 0.0%
Memory size 91.2 KiB
No Income
1069 
Income
360 

Length

Max length 9
Median length 9
Mean length 8.244226732
Min length 6

Characters and Unicode

Total characters 11781
Distinct characters 8
Distinct categories 3 ?
Distinct scripts 2 ?
Distinct blocks 1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique 0 ?
Unique (%) 0.0%

Sample

1st row No Income
2nd row No Income
3rd row No Income
4th row Income
5th row No Income

Common Values

Value Count Frequency (%)
No Income 1069
74.8%
Income 360
 
25.2%

Length

2022-07-31T10:33:08.179350 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-07-31T10:33:08.547345 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Value Count Frequency (%)
income 1429
57.2%
no 1069
42.8%

Most occurring characters

Value Count Frequency (%)
o 2498
21.2%
I 1429
12.1%
n 1429
12.1%
c 1429
12.1%
m 1429
12.1%
e 1429
12.1%
N 1069
9.1%
1069
9.1%

Most occurring categories

Value Count Frequency (%)
Lowercase Letter 8214
69.7%
Uppercase Letter 2498
 
21.2%
Space Separator 1069
 
9.1%

Most frequent character per category

Lowercase Letter
Value Count Frequency (%)
o 2498
30.4%
n 1429
17.4%
c 1429
17.4%
m 1429
17.4%
e 1429
17.4%
Uppercase Letter
Value Count Frequency (%)
I 1429
57.2%
N 1069
42.8%
Space Separator
Value Count Frequency (%)
1069
100.0%

Most occurring scripts

Value Count Frequency (%)
Latin 10712
90.9%
Common 1069
 
9.1%

Most frequent character per script

Latin
Value Count Frequency (%)
o 2498
23.3%
I 1429
13.3%
n 1429
13.3%
c 1429
13.3%
m 1429
13.3%
e 1429
13.3%
N 1069
10.0%
Common
Value Count Frequency (%)
1069
100.0%

Most occurring blocks

Value Count Frequency (%)
ASCII 11781
100.0%

Most frequent character per block

ASCII
Value Count Frequency (%)
o 2498
21.2%
I 1429
12.1%
n 1429
12.1%
c 1429
12.1%
m 1429
12.1%
e 1429
12.1%
N 1069
9.1%
1069
9.1%

incoming_business
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct 2
Distinct (%) 0.1%
Missing 0
Missing (%) 0.0%
Memory size 91.8 KiB
No Income
1275 
Income
154 

Length

Max length 9
Median length 9
Mean length 8.676696991
Min length 6

Characters and Unicode

Total characters 12399
Distinct characters 8
Distinct categories 3 ?
Distinct scripts 2 ?
Distinct blocks 1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique 0 ?
Unique (%) 0.0%

Sample

1st row No Income
2nd row No Income
3rd row No Income
4th row No Income
5th row No Income

Common Values

Value Count Frequency (%)
No Income 1275
89.2%
Income 154
 
10.8%

Length

2022-07-31T10:33:08.858361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-07-31T10:33:09.217361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Value Count Frequency (%)
income 1429
52.8%
no 1275
47.2%

Most occurring characters

Value Count Frequency (%)
o 2704
21.8%
I 1429
11.5%
n 1429
11.5%
c 1429
11.5%
m 1429
11.5%
e 1429
11.5%
N 1275
10.3%
1275
10.3%

Most occurring categories

Value Count Frequency (%)
Lowercase Letter 8420
67.9%
Uppercase Letter 2704
 
21.8%
Space Separator 1275
 
10.3%

Most frequent character per category

Lowercase Letter
Value Count Frequency (%)
o 2704
32.1%
n 1429
17.0%
c 1429
17.0%
m 1429
17.0%
e 1429
17.0%
Uppercase Letter
Value Count Frequency (%)
I 1429
52.8%
N 1275
47.2%
Space Separator
Value Count Frequency (%)
1275
100.0%

Most occurring scripts

Value Count Frequency (%)
Latin 11124
89.7%
Common 1275
 
10.3%

Most frequent character per script

Latin
Value Count Frequency (%)
o 2704
24.3%
I 1429
12.8%
n 1429
12.8%
c 1429
12.8%
m 1429
12.8%
e 1429
12.8%
N 1275
11.5%
Common
Value Count Frequency (%)
1275
100.0%

Most occurring blocks

Value Count Frequency (%)
ASCII 12399
100.0%

Most frequent character per block

ASCII
Value Count Frequency (%)
o 2704
21.8%
I 1429
11.5%
n 1429
11.5%
c 1429
11.5%
m 1429
11.5%
e 1429
11.5%
N 1275
10.3%
1275
10.3%

incoming_no_business
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct 2
Distinct (%) 0.1%
Missing 0
Missing (%) 0.0%
Memory size 91.1 KiB
No Income
1057 
Income
372 

Length

Max length 9
Median length 9
Mean length 8.21903429
Min length 6

Characters and Unicode

Total characters 11745
Distinct characters 8
Distinct categories 3 ?
Distinct scripts 2 ?
Distinct blocks 1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique 0 ?
Unique (%) 0.0%

Sample

1st row No Income
2nd row No Income
3rd row No Income
4th row Income
5th row No Income

Common Values

Value Count Frequency (%)
No Income 1057
74.0%
Income 372
 
26.0%

Length

2022-07-31T10:33:09.533363 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-07-31T10:33:09.889366 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Value Count Frequency (%)
income 1429
57.5%
no 1057
42.5%

Most occurring characters

Value Count Frequency (%)
o 2486
21.2%
I 1429
12.2%
n 1429
12.2%
c 1429
12.2%
m 1429
12.2%
e 1429
12.2%
N 1057
9.0%
1057
9.0%

Most occurring categories

Value Count Frequency (%)
Lowercase Letter 8202
69.8%
Uppercase Letter 2486
 
21.2%
Space Separator 1057
 
9.0%

Most frequent character per category

Lowercase Letter
Value Count Frequency (%)
o 2486
30.3%
n 1429
17.4%
c 1429
17.4%
m 1429
17.4%
e 1429
17.4%
Uppercase Letter
Value Count Frequency (%)
I 1429
57.5%
N 1057
42.5%
Space Separator
Value Count Frequency (%)
1057
100.0%

Most occurring scripts

Value Count Frequency (%)
Latin 10688
91.0%
Common 1057
 
9.0%

Most frequent character per script

Latin
Value Count Frequency (%)
o 2486
23.3%
I 1429
13.4%
n 1429
13.4%
c 1429
13.4%
m 1429
13.4%
e 1429
13.4%
N 1057
9.9%
Common
Value Count Frequency (%)
1057
100.0%

Most occurring blocks

Value Count Frequency (%)
ASCII 11745
100.0%

Most frequent character per block

ASCII
Value Count Frequency (%)
o 2486
21.2%
I 1429
12.2%
n 1429
12.2%
c 1429
12.2%
m 1429
12.2%
e 1429
12.2%
N 1057
9.0%
1057
9.0%

labor_primary
Categorical

HIGH CORRELATION
HIGH CORRELATION

Distinct 2
Distinct (%) 0.1%
Missing 0
Missing (%) 0.0%
Memory size 91.3 KiB
No Income
1124 
Income
305 

Length

Max length 9
Median length 9
Mean length 8.359692092
Min length 6

Characters and Unicode

Total characters 11946
Distinct characters 8
Distinct categories 3 ?
Distinct scripts 2 ?
Distinct blocks 1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique 0 ?
Unique (%) 0.0%

Sample

1st row No Income
2nd row No Income
3rd row No Income
4th row No Income
5th row Income

Common Values

Value Count Frequency (%)
No Income 1124
78.7%
Income 305
 
21.3%

Length

2022-07-31T10:33:10.202359 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-07-31T10:33:10.583368 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Value Count Frequency (%)
income 1429
56.0%
no 1124
44.0%

Most occurring characters

Value Count Frequency (%)
o 2553
21.4%
I 1429
12.0%
n 1429
12.0%
c 1429
12.0%
m 1429
12.0%
e 1429
12.0%
N 1124
9.4%
1124
9.4%

Most occurring categories

Value Count Frequency (%)
Lowercase Letter 8269
69.2%
Uppercase Letter 2553
 
21.4%
Space Separator 1124
 
9.4%

Most frequent character per category

Lowercase Letter
Value Count Frequency (%)
o 2553
30.9%
n 1429
17.3%
c 1429
17.3%
m 1429
17.3%
e 1429
17.3%
Uppercase Letter
Value Count Frequency (%)
I 1429
56.0%
N 1124
44.0%
Space Separator
Value Count Frequency (%)
1124
100.0%

Most occurring scripts

Value Count Frequency (%)
Latin 10822
90.6%
Common 1124
 
9.4%

Most frequent character per script

Latin
Value Count Frequency (%)
o 2553
23.6%
I 1429
13.2%
n 1429
13.2%
c 1429
13.2%
m 1429
13.2%
e 1429
13.2%
N 1124
10.4%
Common
Value Count Frequency (%)
1124
100.0%

Most occurring blocks

Value Count Frequency (%)
ASCII 11946
100.0%

Most frequent character per block

ASCII
Value Count Frequency (%)
o 2553
21.4%
I 1429
12.0%
n 1429
12.0%
c 1429
12.0%
m 1429
12.0%
e 1429
12.0%
N 1124
9.4%
1124
9.4%

incoming_agricultural
Real number (ℝ≥0)

HIGH CORRELATION

Distinct 330
Distinct (%) 23.1%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 34510389.12
Minimum 325112
Maximum 99789095
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:33:10.970361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 325112
5-th percentile 8931238
Q1 23222287
median 30028818
Q3 40038424
95-th percentile 80076849
Maximum 99789095
Range 99463983
Interquartile range (IQR) 16816137

Descriptive statistics

Standard deviation 20778461.8
Coefficient of variation (CV) 0.6020929444
Kurtosis 1.126379714
Mean 34510389.12
Median Absolute Deviation (MAD) 8674991
Skewness 1.162381006
Sum 4.931534605 × 1010
Variance 4.317444746 × 1014
Monotonicity Not monotonic
2022-07-31T10:33:11.439361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
Value Count Frequency (%)
30028818 528
36.9%
53384566 35
 
2.4%
26692283 27
 
1.9%
10676913 25
 
1.7%
13346142 24
 
1.7%
3203074 19
 
1.3%
42707653 19
 
1.3%
21353827 18
 
1.3%
80076847 17
 
1.2%
40038424 17
 
1.2%
Other values (320) 700
49.0%
Value Count Frequency (%)
325112 1
 
0.1%
524837 1
 
0.1%
1040999 3
 
0.2%
1127749 1
 
0.1%
1134422 2
 
0.1%
1227845 1
 
0.1%
1601537 12
0.8%
1981902 1
 
0.1%
1988575 1
 
0.1%
2012598 1
 
0.1%
Value Count Frequency (%)
99789095 1
 
0.1%
98761454 4
0.3%
98761451 1
 
0.1%
98761444 1
 
0.1%
97426832 1
 
0.1%
96759529 1
 
0.1%
96092224 1
 
0.1%
96092218 1
 
0.1%
95024529 1
 
0.1%
94757605 1
 
0.1%

farm_expenses
Real number (ℝ≥0)

HIGH CORRELATION

Distinct 694
Distinct (%) 48.6%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 35491525.54
Minimum 271505
Maximum 99651194
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:33:11.912344 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 271505
5-th percentile 6467540.2
Q1 22799659
median 31363432
Q3 43485844
95-th percentile 80179616.6
Maximum 99651194
Range 99379689
Interquartile range (IQR) 20686185

Descriptive statistics

Standard deviation 21123715.46
Coefficient of variation (CV) 0.595176317
Kurtosis 0.6794695371
Mean 35491525.54
Median Absolute Deviation (MAD) 9898386
Skewness 0.9818540864
Sum 5.071739 × 1010
Variance 4.462113547 × 1014
Monotonicity Not monotonic
2022-07-31T10:33:12.418360 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
Value Count Frequency (%)
31363432 490
34.3%
66730708 13
 
0.9%
53384566 10
 
0.7%
2224357 9
 
0.6%
20019212 9
 
0.6%
26692283 8
 
0.6%
46711496 8
 
0.6%
31140998 7
 
0.5%
70067245 6
 
0.4%
15570499 5
 
0.3%
Other values (684) 864
60.5%
Value Count Frequency (%)
271505 1
0.1%
330317 1
0.1%
1021536 1
0.1%
1096608 2
0.1%
1183358 1
0.1%
1227845 1
0.1%
1240079 1
0.1%
1290127 1
0.1%
1501441 1
0.1%
1545928 1
0.1%
Value Count Frequency (%)
99651194 1
 
0.1%
99219666 1
 
0.1%
98983884 1
 
0.1%
98285103 1
 
0.1%
97871709 1
 
0.1%
97871703 3
0.2%
97426834 1
 
0.1%
97382345 1
 
0.1%
97315617 1
 
0.1%
96981966 1
 
0.1%

lasting_investment
Real number (ℝ≥0)

HIGH CORRELATION

Distinct 982
Distinct (%) 68.7%
Missing 0
Missing (%) 0.0%
Infinite 0
Infinite (%) 0.0%
Mean 32992215.08
Minimum 74292
Maximum 99446667
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:33:12.891344 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 74292
5-th percentile 3502840.2
Q1 20019113
median 28411718
Q3 39826862
95-th percentile 80183650
Maximum 99446667
Range 99372375
Interquartile range (IQR) 19807749

Descriptive statistics

Standard deviation 21216209.32
Coefficient of variation (CV) 0.6430671379
Kurtosis 0.9207809173
Mean 32992215.08
Median Absolute Deviation (MAD) 9527866
Skewness 1.113504523
Sum 4.714587535 × 1010
Variance 4.501275381 × 1014
Monotonicity Not monotonic
2022-07-31T10:33:13.344359 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
Value Count Frequency (%)
28411718 425
29.7%
1601537 3
 
0.2%
55513086 2
 
0.1%
54452259 2
 
0.1%
17456754 2
 
0.1%
18417674 2
 
0.1%
14692004 2
 
0.1%
18923431 2
 
0.1%
18577829 2
 
0.1%
12196976 2
 
0.1%
Other values (972) 985
68.9%
Value Count Frequency (%)
74292 1
0.1%
249039 1
0.1%
297591 1
0.1%
298578 1
0.1%
299319 1
0.1%
337604 1
0.1%
349599 1
0.1%
362133 1
0.1%
423733 1
0.1%
434354 1
0.1%
Value Count Frequency (%)
99446667 1
0.1%
98965753 1
0.1%
98875537 1
0.1%
98555206 1
0.1%
98519951 1
0.1%
97350049 1
0.1%
97119873 1
0.1%
96487341 1
0.1%
96373187 1
0.1%
96092224 1
0.1%

no_lasting_investmen
Real number (ℝ≥0)

HIGH CORRELATION
MISSING

Distinct 939
Distinct (%) 66.6%
Missing 20
Missing (%) 1.4%
Infinite 0
Infinite (%) 0.0%
Mean 33603850.54
Minimum 126312
Maximum 99651194
Zeros 0
Zeros (%) 0.0%
Negative 0
Negative (%) 0.0%
Memory size 11.3 KiB
2022-07-31T10:33:14.163361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Quantile statistics

Minimum 126312
5-th percentile 4542136.8
Q1 20642033
median 28292707
Q3 41517625
95-th percentile 80076848.2
Maximum 99651194
Range 99524882
Interquartile range (IQR) 20875592

Descriptive statistics

Standard deviation 21602279.52
Coefficient of variation (CV) 0.6428513154
Kurtosis 0.7809443319
Mean 33603850.54
Median Absolute Deviation (MAD) 9365209
Skewness 1.113117189
Sum 4.734782542 × 1010
Variance 4.666584806 × 1014
Monotonicity Not monotonic
2022-07-31T10:33:14.610361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram with fixed size bins (bins=50)
Value Count Frequency (%)
28292707 425
29.7%
3558971 3
 
0.2%
60724945 3
 
0.2%
11121784 3
 
0.2%
20019212 3
 
0.2%
42262781 2
 
0.1%
80076849 2
 
0.1%
27025936 2
 
0.1%
2224357 2
 
0.1%
14235884 2
 
0.1%
Other values (929) 962
67.3%
(Missing) 20
 
1.4%
Value Count Frequency (%)
126312 1
0.1%
127122 1
0.1%
132327 1
0.1%
169496 2
0.1%
287943 1
0.1%
503372 1
0.1%
861271 1
0.1%
888853 1
0.1%
909762 1
0.1%
1032235 1
0.1%
Value Count Frequency (%)
99651194 1
0.1%
99428755 1
0.1%
99117336 1
0.1%
98794813 1
0.1%
98450031 1
0.1%
97871703 1
0.1%
97871695 1
0.1%
97827215 1
0.1%
97760487 1
0.1%
96759529 1
0.1%

mental_health
Categorical

Distinct 2
Distinct (%) 0.1%
Missing 0
Missing (%) 0.0%
Memory size 96.9 KiB
Not Depressed
1191 
Depressed
238 

Length

Max length 13
Median length 13
Mean length 12.33379986
Min length 9

Characters and Unicode

Total characters 17625
Distinct characters 10
Distinct categories 3 ?
Distinct scripts 2 ?
Distinct blocks 1 ?
The Unicode Standard assigns character properties to each code point, which can be used to analyse textual variables.

Unique

Unique 0 ?
Unique (%) 0.0%

Sample

1st row Not Depressed
2nd row Depressed
3rd row Not Depressed
4th row Not Depressed
5th row Not Depressed

Common Values

Value Count Frequency (%)
Not Depressed 1191
83.3%
Depressed 238
 
16.7%

Length

2022-07-31T10:33:15.035361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Histogram of lengths of the category

Category Frequency Plot

2022-07-31T10:33:15.433361 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Value Count Frequency (%)
depressed 1429
54.5%
not 1191
45.5%

Most occurring characters

Value Count Frequency (%)
e 4287
24.3%
s 2858
16.2%
D 1429
 
8.1%
p 1429
 
8.1%
r 1429
 
8.1%
d 1429
 
8.1%
N 1191
 
6.8%
o 1191
 
6.8%
t 1191
 
6.8%
1191
 
6.8%

Most occurring categories

Value Count Frequency (%)
Lowercase Letter 13814
78.4%
Uppercase Letter 2620
 
14.9%
Space Separator 1191
 
6.8%

Most frequent character per category

Lowercase Letter
Value Count Frequency (%)
e 4287
31.0%
s 2858
20.7%
p 1429
 
10.3%
r 1429
 
10.3%
d 1429
 
10.3%
o 1191
 
8.6%
t 1191
 
8.6%
Uppercase Letter
Value Count Frequency (%)
D 1429
54.5%
N 1191
45.5%
Space Separator
Value Count Frequency (%)
1191
100.0%

Most occurring scripts

Value Count Frequency (%)
Latin 16434
93.2%
Common 1191
 
6.8%

Most frequent character per script

Latin
Value Count Frequency (%)
e 4287
26.1%
s 2858
17.4%
D 1429
 
8.7%
p 1429
 
8.7%
r 1429
 
8.7%
d 1429
 
8.7%
N 1191
 
7.2%
o 1191
 
7.2%
t 1191
 
7.2%
Common
Value Count Frequency (%)
1191
100.0%

Most occurring blocks

Value Count Frequency (%)
ASCII 17625
100.0%

Most frequent character per block

ASCII
Value Count Frequency (%)
e 4287
24.3%
s 2858
16.2%
D 1429
 
8.1%
p 1429
 
8.1%
r 1429
 
8.1%
d 1429
 
8.1%
N 1191
 
6.8%
o 1191
 
6.8%
t 1191
 
6.8%
1191
 
6.8%

Interactions

2022-07-31T10:32:44.479786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:19.709112 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:26.007152 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:31.802160 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:37.923146 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:43.934282 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:49.774278 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:56.347282 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:02.142272 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:08.249786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:14.334797 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:20.212802 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:26.397805 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:32.493794 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:38.662806 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:44.882786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:20.271152 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:26.436157 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:32.536152 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:38.315162 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:44.333266 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:50.150266 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:56.734282 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:02.541266 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:08.652785 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:14.720788 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:20.609788 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:26.798788 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:32.910793 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:39.065785 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:45.615794 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:20.666150 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:26.816162 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:32.926159 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:38.680149 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:44.713274 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:50.568273 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:57.114276 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:02.919267 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:09.051806 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:15.103803 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:20.992800 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:27.207787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:33.306787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:39.446787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:46.009802 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:21.086159 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:27.215172 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:33.313159 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:39.067149 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:45.106281 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:51.005274 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:57.510283 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:03.664698 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:09.430792 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:15.523791 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:21.391802 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:27.609788 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:33.724801 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:39.860802 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:46.386786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:21.462160 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:27.598143 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:33.679159 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:39.437143 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:45.487283 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:51.390277 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:57.884265 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:04.033786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:09.800794 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:15.901802 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:21.763786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:28.001806 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:34.109793 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:40.245807 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:46.760787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:21.864146 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:27.993160 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:34.072147 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:39.814151 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:45.869267 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:51.764284 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:58.288283 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:04.427803 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:10.194803 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:16.286788 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:22.148787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:28.418808 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:34.509788 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:40.627787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:47.143786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:22.473163 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:28.378150 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:34.438148 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:40.184159 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:46.253266 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:52.140272 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:58.669281 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:04.794786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:10.561802 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:16.655802 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:22.515802 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:28.808787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:35.235802 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:41.002790 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:47.532786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:22.881161 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:28.761142 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:34.849144 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:40.546149 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:46.640273 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:52.928267 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:59.081274 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:05.168803 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:10.941786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:17.048787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:22.897805 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:29.214795 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:35.598803 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:41.390789 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:47.943805 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:23.272161 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:29.135147 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:35.246144 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:40.930144 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:47.031281 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:53.357272 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:59.451266 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:05.549787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:11.336804 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:17.456794 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:23.285788 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:29.609804 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:35.984802 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:41.771795 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:48.323787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:23.674143 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:29.507149 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:35.611160 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:41.302142 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:47.415294 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:53.803276 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:59.838268 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:05.929794 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:11.702792 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:17.839807 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:23.710802 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:30.026792 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:36.382787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:42.151800 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:48.719805 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:24.067158 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:29.887143 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:36.005150 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:41.664146 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:47.806289 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:54.255269 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:00.220282 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:06.324786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:12.081794 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:18.244795 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:24.447804 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:30.437804 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:36.766802 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:42.551786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:49.103787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:24.459143 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:30.271142 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:36.398144 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:42.400283 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:48.189278 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:54.702278 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:00.596272 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:06.697801 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:12.470787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:18.645794 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:24.826787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:30.848792 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:37.148804 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:42.925788 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:49.487787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:24.843141 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:30.645160 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:36.773160 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:42.796281 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:48.596266 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:55.176272 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:00.986281 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:07.111791 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:12.843786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:19.036803 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:25.207789 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:31.270803 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:37.528790 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:43.327800 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:49.877790 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:25.231157 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:31.044160 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:37.163160 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:43.186267 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:48.970278 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:55.587281 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:01.364275 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:07.492787 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:13.222789 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:19.423792 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:25.600794 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:31.686809 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:37.908786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:43.700794 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:50.265806 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:25.616142 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:31.425159 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:37.546159 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:43.565266 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:49.374282 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:31:55.963270 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:01.761273 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:07.863803 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:13.954803 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:19.811801 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:26.004795 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:32.076805 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:38.289800 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
2022-07-31T10:32:44.093786 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Correlations

2022-07-31T10:33:15.770926 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Spearman's ρ

The Spearman's rank correlation coefficient (ρ) is a measure of monotonic correlation between two variables, and is therefore better in catching nonlinear monotonic correlations than Pearson's r. It's value lies between -1 and +1, -1 indicating total negative monotonic correlation, 0 indicating no monotonic correlation and 1 indicating total positive monotonic correlation.

To calculate ρ for two variables X and Y, one divides the covariance of the rank variables of X and Y by the product of their standard deviations.
2022-07-31T10:33:16.528940 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Pearson's r

The Pearson's correlation coefficient (r) is a measure of linear correlation between two variables. It's value lies between -1 and +1, -1 indicating total negative linear correlation, 0 indicating no linear correlation and 1 indicating total positive linear correlation. Furthermore, r is invariant under separate changes in location and scale of the two variables, implying that for a linear function the angle to the x-axis does not affect r.

To calculate r for two variables X and Y, one divides the covariance of X and Y by the product of their standard deviations.
2022-07-31T10:33:17.221940 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Kendall's τ

Similarly to Spearman's rank correlation coefficient, the Kendall rank correlation coefficient (τ) measures ordinal association between two variables. It's value lies between -1 and +1, -1 indicating total negative correlation, 0 indicating no correlation and 1 indicating total positive correlation.

To calculate τ for two variables X and Y, one determines the number of concordant and discordant pairs of observations. τ is given by the number of concordant pairs minus the discordant pairs divided by the total number of pairs.
2022-07-31T10:33:17.882939 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Cramér's V (φc)

Cramér's V is an association measure for nominal random variables. The coefficient ranges from 0 to 1, with 0 indicating independence and 1 indicating perfect association. The empirical estimators used for Cramér's V have been proved to be biased, even for large samples. We use a bias-corrected measure that has been proposed by Bergsma in 2013 that can be found here.
2022-07-31T10:33:18.459927 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/

Phik (φk)

Phik (φk) is a new and practical correlation coefficient that works consistently between categorical, ordinal and interval variables, captures non-linear dependency and reverts to the Pearson correlation coefficient in case of a bivariate normal input distribution. There is extensive documentation available here.

Missing values

2022-07-31T10:32:51.039986 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
A simple visualization of nullity by column.
2022-07-31T10:32:52.648801 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
Nullity matrix is a data-dense display which lets you quickly visually pick out patterns in data completion.
2022-07-31T10:32:54.374514 image/svg+xml Matplotlib v3.5.2, https://matplotlib.org/
The dendrogram allows you to more fully correlate variable completion, revealing trends deeper than the pairwise ones visible in the correlation heatmap.

Sample

First rows

Survey_id Ville_id sex age relationship number_children education_level total_members gained_asset durable_asset save_asset living_expenses other_expenses incoming_salary incoming_own_farm incoming_business incoming_no_business labor_primary incoming_agricultural farm_expenses lasting_investment no_lasting_investmen mental_health
0 926 91 F 28 Couple 4 10 5 28912201 22861940 23399979 26692283 28203066 No Income No Income No Income No Income No Income 30028818 31363432 28411718 28292707.0 Not Depressed
1 747 57 F 23 Couple 3 8 5 28912201 22861940 23399979 26692283 28203066 No Income No Income No Income No Income No Income 30028818 31363432 28411718 28292707.0 Depressed
2 1190 115 F 22 Couple 3 9 5 28912201 22861940 23399979 26692283 28203066 No Income No Income No Income No Income No Income 30028818 31363432 28411718 28292707.0 Not Depressed
3 1065 97 F 27 Couple 2 10 4 52667108 19698904 49647648 397715 44042267 No Income Income No Income Income No Income 22288055 18751329 7781123 69219765.0 Not Depressed
4 806 42 M 59 Single 4 10 6 82606287 17352654 23399979 80877619 74503502 Income No Income No Income No Income Income 53384566 20731006 20100562 43419447.0 Not Depressed
5 483 25 F 35 Couple 6 10 8 35937466 736707 23399979 30696127 11531066 No Income Income No Income Income No Income 22688441 18907036 4442561 76629095.0 Not Depressed
6 849 130 M 34 Single 1 9 3 41303144 21925041 23399979 66730708 10890451 No Income No Income No Income No Income No Income 26692283 22243569 22562288 55608922.0 Depressed
7 1386 72 F 21 Couple 2 10 4 12013633 20323505 48046108 80076849 58456101 No Income No Income Income No Income No Income 9275569 36979933 33922659 54600174.0 Not Depressed
8 930 195 F 32 Couple 7 9 9 11087568 25224208 80076851 30162281 67184479 Income No Income No Income No Income Income 32564587 28738691 14018381 15117619.0 Not Depressed
9 390 33 F 29 Couple 4 10 5 28912201 22861940 23399979 26692283 28203066 No Income No Income No Income No Income No Income 30028818 31363432 28411718 28292707.0 Not Depressed

Last rows

Survey_id Ville_id sex age relationship number_children education_level total_members gained_asset durable_asset save_asset living_expenses other_expenses incoming_salary incoming_own_farm incoming_business incoming_no_business labor_primary incoming_agricultural farm_expenses lasting_investment no_lasting_investmen mental_health
1419 81 7 F 30 Couple 1 14 5 28912201 22861940 23399979 26692283 28203066 No Income No Income No Income No Income No Income 30028818 31363432 28411718 28292707.0 Not Depressed
1420 707 52 F 20 Couple 2 10 5 28912201 22861940 23399979 26692283 28203066 No Income No Income No Income No Income No Income 30028818 31363432 28411718 28292707.0 Not Depressed
1421 1317 188 F 20 Couple 2 10 4 36531058 11210759 16456747 14387141 17136446 No Income Income No Income Income No Income 39771502 3942428 41031378 50755151.0 Not Depressed
1422 462 27 F 35 Couple 6 6 8 21764888 22861940 14112096 18471058 24823823 No Income Income No Income No Income No Income 13346142 11121784 2314812 15926396.0 Not Depressed
1423 109 15 F 25 Couple 3 9 5 24343362 16928246 38868158 77674545 325112 No Income Income No Income No Income No Income 13346142 53384566 86900793 17556848.0 Not Depressed
1424 255 22 F 25 Couple 1 7 5 28912201 22861940 23399979 26692283 28203066 No Income No Income No Income No Income No Income 30028818 31363432 28411718 28292707.0 Not Depressed
1425 547 69 F 28 Couple 4 10 6 15711078 24023054 15506558 10476722 71588707 No Income Income No Income No Income No Income 23022095 1021536 1823477 47384361.0 Not Depressed
1426 893 184 F 66 Single 0 1 1 42440731 22861940 22562605 12545372 56534257 No Income Income No Income No Income No Income 12545373 10454478 46444572 10454478.0 Depressed
1427 363 75 F 51 Couple 1 12 5 28912201 22861940 23399979 26692283 28203066 No Income No Income No Income No Income No Income 30028818 31363432 28411718 28292707.0 Not Depressed
1428 231 12 F 33 Single 4 8 5 81678391 22861940 47855984 10289875 10730298 No Income Income No Income Income No Income 20019212 16682677 69642126 13012488.0 Not Depressed